Processing math: 18%

Some Important Formulas for Quadratic Equation and exponential








(i) am.an=am+n


(ii) aman=amn


(iii) (am)n=amn


(iv) an=1an


(v) nam=amn


(vii)(ab)m=am.bm.


(viii)(ab)m=ambm


(ix) If am=bm(m0),thena=b.


(x) If am=anthenm=n.



● Quadratic Equation Formulas :

Quadratic equation is of form  ax² + bx + c = 0 .....*

(i) Roots of the quadratic equation are \alpha, \beta = \displaystyle \frac{-b ± \sqrt{(b^{2} – 4ac)}}{2a}.


(ii) If \alpha and \beta be the roots of the quadratic equation  then,


sum of its roots  = \alpha+\beta = \displaystyle \frac{-b}{a}  or we can say \displaystyle \frac{- (\text{coefficient of x})}{\text{(coefficient of \(x^2\) )}}


and product of its roots  = \alpha.\beta = \displaystyle \frac{c}{a} or we can say   \displaystyle \frac{\text{Constant term}} {\text{(Coefficient of \(x^{2}\))}}.


(iii) The quadratic equation with both real  roots are \alpha and \beta is

x^2 - (\alpha + \beta)x + \alpha.\beta= 0

i.e. , x^2 - (\text{sum of the roots}) x + \text{product of the roots} = 0.

(iv) The expression (b^2 - 4ac) is called the discriminant of quadratic equation. Denoted by D

(v) If a, b, c are real and rational then the roots of quadratic equation are

(a) Real and equal when b^2 - 4ac = 0.

(b) Real and distinct when b^2 - 4ac > 0.

(c) Imaginary when b^2 - 4ac < 0.

(d)Rational when b^2- 4ac is a perfect square and

(e) Irrational when b^2 - 4ac is not a perfect square.

(vi) If \alpha + i\beta be one root of quadratic equation then its other root will be complex conjugate  of this i.e \alpha - i\beta .


(vii) If \alpha +\sqrt{\beta} be one root of equation quadratic equation then its other root will be conjugate irrational quantity \alpha - \sqrt{\beta} (a, b, c are rational).


● Arithmetical Progression (A.P.):

(i) The general form of an A. P. is a, a + d, a + 2d, a + 3d,.....

where a is the first term and d, the common difference of the A.P.

(ii) The nth term of the above A.P. is a_{n} = a + (n - 1)d.

(iii) The sum of first n terns of the above A.P. is \displaystyle S_{n} = \frac{n}{2} (a + l)  (where l is last term )or, \displaystyle S_{n} = \frac{n}{2} [2a + (n - 1) d]


(iv) The arithmetic mean between two given numbers a and b is \displaystyle \frac{(a + b)}{2}.


(v) 1 + 2 + 3 + ...... + n =\displaystyle \frac{ n(n + 1)}{2}.


(vi) 1^{2} + 2^{2} + 3^{2} +… + n^{2} = \displaystyle\frac{n(n+ 1)(2n+ 1)}{6}.


(vii) 1^{3} + 2^{3} + 3^{3} + . . . . + n^{3}= \displaystyle \frac{{n^{2}(n + 1)^{2}}}{4 }.


● Geometrical Progression (G.P.) :

(i) The terms G.P. is a, ar, ar^{2}, ar^{3}, . . . . .  where a is the first term and r, the common ratio of the G.P.

(ii) The nth term given  G.P. is t_{r} = a.r^{n-1}  .

(iii) The sum of first n terms of the above G.P. is S_{n} =\displaystyle  \frac{a . (1 - r^{n})}{(1 – r)}when -1 < r < 1

or, S _{n}= \displaystyle \frac{a .(r^{n} – 1)}{(r – 1) } when r > 1 or r < -1

(iv) a + ar + ar^{2} +........+\infty = \displaystyle \frac{a}{1 – r} where -1 < r < 1.



Post a Comment

0 Comments