∙ddxxn=nxn−1
∙ddxa=0
∙ddxaf(x)=af′(x)[heref′(x)=dfdx]
∙ddx(ax+b)n=n(ax+b)n−1ddx(ax+b)
∙ddx(f±g)=dfdx±gdx
∙Productruleddx(f×g)=f.dgdx+g.dfdx
∙Quotientruleddx(fg)=gdfdx−fdgdxg2
∙ddx(sinx)=cosx
∙ddx(cosx)=−sinx
∙ddx(tanx)=sec2xwhere
x≠(2n+1)π2,n∈Z
∙ddx(cotx)=−csc2xwhere
x≠nπn∈Z
∙ddx(secx)=secxtanxwhere
x≠(2n+1)π2,n∈Z
∙ddx(cscx)=−cotxcscxwhere
x≠nπ,n∈Z
∙ddx(sin−1x)=1√1−x2where|x|<1
∙ddx(cos−1x)=−1√1−x2
where|x|<1
∙ddx(tan−1x)=11+x2
where−∞<x<∞
∙ddx(cot−1x)=−11+x2
where−∞<x<∞
∙ddx(sec−1x)=1|x|√x2−1where|x|>1
∙ddx(csc−1x)=−1|x|√x2−1where|x|>1
∙ddx(ax)=axlna
∙ddx(ex)=ex
∙ddx(eax)=eax.ddx(ax)
∙ddx(logax)=1xlna, x>0
∙ddx(bx)=b
∙ddx(sinhx)=coshx
∙ddx(coshx)=sinhx
∙ddx(tanhx)=sech2x
0 Comments