Processing math: 100%

Derivative Formulas




∙ddxxn=nxn−1

∙ddxa=0

∙ddxaf(x)=af′(x)[heref′(x)=dfdx]

∙ddx(ax+b)n=n(ax+b)n−1ddx(ax+b)

∙ddx(f±g)=dfdx±gdx

∙Productruleddx(f×g)=f.dgdx+g.dfdx



∙Quotientruleddx(fg)=gdfdx−fdgdxg2



∙ddx(sinx)=cosx

∙ddx(cosx)=−sinx

∙ddx(tanx)=sec2xwhere
x≠(2n+1)π2,n∈Z

∙ddx(cotx)=−csc2xwhere
x≠nπn∈Z

∙ddx(secx)=secxtanxwhere
x≠(2n+1)π2,n∈Z

∙ddx(cscx)=−cotxcscxwhere
x≠nπ,n∈Z

∙ddx(sin−1x)=1√1−x2where|x|<1

∙ddx(cos−1x)=−1√1−x2
where|x|<1

∙ddx(tan−1x)=11+x2
where−∞<x<∞

∙ddx(cot−1x)=−11+x2
where−∞<x<∞

∙ddx(sec−1x)=1|x|√x2−1where|x|>1

∙ddx(csc−1x)=−1|x|√x2−1where|x|>1

∙ddx(ax)=axlna

∙ddx(ex)=ex

∙ddx(eax)=eax.ddx(ax)

∙ddx(logax)=1xlna, x>0

∙ddx(bx)=b

∙ddx(sinhx)=coshx

∙ddx(coshx)=sinhx

∙ddx(tanhx)=sech2x

Post a Comment

0 Comments